Cluster Range¶
-
class
blocksci.ClusterRange¶ -
addresses¶ For each item: Get a iterable over all the addresses in the cluster
Type: blocksci.AddressIterator
-
all¶ Returns a list of all of the objects in the range
-
balance(height: int=-1) → numpy.ndarray[int64]¶ For each item: Calculates the balance held by this cluster at the height (Defaults to the full chain)
Return type: numpy.ndarray[int64]
-
count_of_type(address_type: blocksci.address_type) → numpy.ndarray[uint32]¶ For each item: Return the number of addresses of the given type in the cluster
Return type: numpy.ndarray[uint32]
-
in_txes_count() → numpy.ndarray[int64]¶ For each item: Return the number of transactions where this cluster was an input
Return type: numpy.ndarray[int64]
-
index¶ For each item: The internal identifier of the cluster
Type: numpy.ndarray[uint32]
-
out_txes_count() → numpy.ndarray[int64]¶ For each item: Return the number of transactions where this cluster was an output
Return type: numpy.ndarray[int64]
-
outs() → blocksci.OutputIterator¶ For each item: Returns a list of all outputs sent to this cluster
Return type: blocksci.OutputIterator
-
size() → numpy.ndarray[int64]¶ For each item: The number of addresses in the cluster
Return type: numpy.ndarray[int64]
-
tagged_addresses(tagged_addresses: Dict[Address, str]) → blocksci.TaggedAddressIterator¶ For each item: Given a dictionary of tags, return a range of TaggedAddress objects for any tagged addresses in the cluster
Return type: blocksci.TaggedAddressIterator
-
type_equiv_size¶ For each item: The number of addresses in the cluster not counting type equivalent addresses
Type: numpy.ndarray[int64]
-