Cluster Iterator¶
-
class
blocksci.cluster.ClusterIterator¶ -
address_count() → numpy.ndarray[int]¶ For each item: The number of addresses in the cluster
-
property
addresses¶ For each item: Get a iterable over all the addresses in the cluster
-
balance(height: int = - 1) → numpy.ndarray[int]¶ For each item: Calculates the balance held by this cluster at the height (Defaults to the full chain)
-
count_of_type(address_type: blocksci::AddressType::Enum) → numpy.ndarray[int]¶ For each item: Return the number of addresses of the given type in the cluster
-
in_txes_count() → numpy.ndarray[int]¶ For each item: Return the number of transactions where this cluster was an input
-
property
index¶ For each item: The internal identifier of the cluster
- Type
numpy.ndarray[int]
-
input_txes_count() → numpy.ndarray[int]¶ For each item: Return the number of transactions where this cluster was an input
-
inputs() → blocksci.InputIterator¶ For each item: Returns an iterator over all inputs spent from this cluster
-
ins() → blocksci.InputIterator¶ For each item: Returns an iterator over all inputs spent from this cluster
-
out_txes_count() → numpy.ndarray[int]¶ For each item: Return the number of transactions where an address in this cluster was used in an output
-
output_txes_count() → numpy.ndarray[int]¶ For each item: Return the number of transactions where an address in this cluster was used in an output
-
outputs() → blocksci.OutputIterator¶ For each item: Returns an iterator over all outputs sent to this cluster
-
outs() → blocksci.OutputIterator¶ For each item: Returns an iterator over all outputs sent to this cluster
-
tagged_addresses(tagged_addresses: Dict[Address, str]) → blocksci.cluster.TaggedAddressIterator¶ For each item: Given a dictionary of tags, return a range of TaggedAddress objects for any tagged addresses in the cluster
-
property
type_equiv_size¶ For each item: The number of addresses in the cluster not counting type equivalent addresses
- Type
numpy.ndarray[int]
-